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The steady oblique interaction of two solitary waves on the surface of water of constant 
depth is considered. One wave is taken to be of arbitrary (large) amplitude and the 
other is small with a (non-dimensional) amplitude measured by the parameter E .  

A solution is sought as an asymptotic expansion, based on E ,  that assumes that in some 
region the solution is the sum of the two waves plus interaction terms. It is shown 
that this expansion is not uniformly valid close to a critical angle. This angle varies 
from zero (parallel waves) up to  about 63*5”, as the amplitude of the larger wave 
increases from infinitesimally small to the largest-possible solitary wave. I n  the limit 
of two small waves, the details agree precisely with the results obtained by Miles 
( 1 9 7 7 ~ ) .  

When the angle between the two waves is dose to the critical angle, for a given large 
wave, an alternative asymptotic expansion is required. In  this strong-interaction case, 
the dominant term is just the large wave but with a phase shift that is an arbitrary 
function of the characteristic variable associated with the small wave. This function is 
determined by matching to an appropriate far field, and it turns out to be proportional 
to the logarithm of a hypergeometric function (which itself can be expressed in terms 
of the associated Legendre function Pi”). The phase shift is then well-defined (finite, 
real) provided the angle is not very close to the critical value. When this occurs the 
phase shift can be infinite a t  a specific angle (which corresponds to the case I,ul = v > 0)) 
and even closer to the critical angle (lpl < v) the phase shift is undefined (no longer 
real). A real solution for the wave profile is still possible if negative amplitudes are 
allowed, but the resulting solution is unacceptable since the surface is then not undis- 
turbed a t  infinity. It is shown that the criterion 11.1 c v matches exactly (for two small 
waves) with Miles’ criterion for the non-existence of a regular reflection. 

v) i t  is argued that the small wave cannot 
penetrate the large wave unchanged. The large wave suffers significant distortion 
(bending) in the interaction, but the small wave, if it penetrates a t  all, must have an 
amplitude o(c) .  This is the main aspect of the problem which cannot be completely 
determined using the present methods. The difficulty can be traced to the large 
solitary wave which is not known in closed form: only the exponential behaviour in the 
‘tail’ is used explicitly in this work. 

For the strong interaction (and I,u( 

1. Introduction 
The nonlinear interaction of waves has been, for some considerable time, a fasci- 

nating and rewarding field of study. Probably the most outstanding approach to 
emerge over the last decade is the inverse-scattering transform. This has enabled 
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exact descriptions of various nonlinear wave phenomena to be obtained as solutions 
to certain rather special evolution equations. I n  the context of water waves the 
Korteweg-de Vries (KdV) equation holds a central position, the more so because the 
equation appears to  predict readily identifiable types of interaction (for plane parallel 
waves). More recently the two-dimensional analogue of the KdV equation (2-D KdV) 
has facilitated the analysis of the oblique interaction of solitary wiLves (see e.g. 
Satsuma 1976). 

In  order to study the role OP the 2-D KdV equation -and therefore the nonlinear 
interaction -in water-wave theory, Miles ( 1 9 7 7 4  considered the general interaction of 
two oblique solitary waves. He showed that an asymptotic expansion in amplitude 
was not uniformly valid when the two waves were nearly parallel; in this situation the 
waves and their interaction were of the same order of magnitude. Consequently a 
new solution was required for this ‘strong’ interaction, and it transpired that it was 
just the appropriate solution of the 2-D KdV equation. Miles also went on to  point out 
that, in certain circumstances, a regular reflection (or interaction) was impossible. 
Now the results obtained by Miles, and in fact any discussion that uses a KdV equation 
a t  some stage, involves the approximation to small-amplitude long waves (see Johnson 
1980). Unfortunately this restricts the application of the theories and perhaps over- 
looks some important (and new) phenomena. However, it must be said that these 
assumptions seem to be necessary if reasonably tractable problems are to be formulated. 

Over the last year or two, the Department of Ocean Engineering a t  Newcastle has 
undertaken some work on the oblique interaction of waves that can arise in an inshore 
environment. For example, waves running in obliquely to a groyne or harbour wall 
suffer reflection, and it is then these reflected waves which interact with the incoming 
(incident) waves. The resulting wave profiles can be quite unusual in form, and can 
dramatically affect the onset of wave-breaking (Halliwell & Machen 1981). However, 
the observations and related experimental work are found to apply to r4gimes where 
the wave amplitude is in no sense small, a t  least for the incident wave. I n  fact the 
incident wave can be very close to breaking when the interaction occurs. The lack of 
available data on the interaction of larger-amplitude waves prompted the present 
study. 

It is readily observed that, on occasions, the waves approaching a shoreline are 
fairly well-spaced one from another. This suggests that a first attempt a t  analysis 
should treat the waves as solitary. Of course there are situations when the waves must 
be regarded as both of large amplitude and periodic, but this will be beyond the scope 
of the work discussed here. If the incident wave is to be a large solitary wave, what of 
the reflected wave ? Clearly, i t  would be most gratifying if this could also be of arbitrary 
(large) amplitude, but the resulting problem would appear to be amenable only to a 
numerical treatment. Mathematical expediency leads us immediately to consider a 
model in which the reflected wave is a small solitary wave. As i t  happens the reflected 
wave is rather smaller than the incident wave, owing to the loss of energy and 
momentum at  the wall; in some circumstances i t  is found that the reflected wave can 
be quite small compared with the incident wave. It is also quite natural, if eventually 
we wish to study the interaction of two large waves, to first understand the problem of 
one large and one small wave. To this end we shall examine the oblique interaction 
of a large solitary wave with a small one, over a constant depth of water. 

The large solitary wave cannot be expressed in closed form, although its shape and 
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properties are well-known (see Longuet-Higgins & Fenton 1974; Byatt-Smith & 
Longuet-Higgins 1976; Cokelet 1977). Nevertheless, i t  is possible to discuss the 
perturbation of a large solitary wave due to the presence of a small (oblique) wave 
without specifying in detail the form of the larger wave. It is necessary merely to 
assume the existence of such a solution, and then use the amplitude of the smaller 
wave to define an appropriate expansion parameter. The general form of the inter- 
action, and the non-uniformity in the expansion, can then be obtained by using only 
the exponential decay in the tail of the large wave. However, detailed properties of the 
interaction wave profile clearly require more information about the large wave itself. 
We shall show that the breakdown in the expansion is similar in character to that given 
in Miles (1977a), but that the resulting profile can be somewhat different. 

2. Formulation and basic expansion 
The fluid is assumed to be incompressible and irrotational, and bounded above by a 

free surface and below by a rigid horizontal surface. The fluid extends to infinity in all 
horizontal directions and the free surface is assumed to be a surface of constant 
pressure. I n  the absence of any disturbances the fluid is stationary with a constant 
depth d. Using only d and the acceleration due to gravity g, the governing equations 
and boundary conditions are non-dimensionalized to  yield 

on x = l + ~ .  

? l + a g , y q 2 + ( V L $ ) 2 ]  at 2 az 
= 0) 

The vertical co-ordinate measured up from the bottom of the fluid is x ,  and the free 
surface is a t  z = 1 +q. The gradient operator perpendicular to z is denoted by V,, so 
that we may write 

for example. Anticipating that the wave interaction will be a steady phenomenon (we 
exclude wave breaking), then the problem can be expressed in terms of two charac- 
teristic co-ordinates. Let the unit normals to the undistorted wave fronts be given by 
ni (i = 1 , 2 )  and introduce 

5 = n,.x-F1t, g =  e3(nz.x-F2t), (4) 

where x = (x,y), F, are Froude numberst and e is the (non-dimensional) amplitude 
of the smaller wave. The gradient operator now becomes 

t That is, non-dimensional propagation speeds. 
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whence (1)-(3) can be written as 

$22 + $55 + 2 ~ ’ t h $ ~ ~  + E $ ~ ~  = 0, with $2 = 0 on z = 0, (6a ,  b )  

(7) 
on x = l + q ,  1 (8) 

$2 = - 

7 - (Pi$& + ~3F2 $5) + *[$,” + $! + 2~4h$,$5 + E$!] = 0 

where h = n,. n2 = cos (0, - 02), and subscripts [, 5 and z denote partial derivatives. 
Here el - 8, measures the angle between the normals (and therefore between the wave 
fronts). 

The large solitary wave is assumed to be the appropriate solution of the set 

$22+$I f  = 0, with $z = 0 on z = 0, (9a, b )  

= ($,-F1)r6, r-Fl#f++($,”+$f2)  = 0 On 2 = 1 + q .  (10% b )  

The small solitary wave is then the corresponding solution of (9) and (10) when 
expressed according to the transformation 

[-+@-3; $ - + E + $ ;  v -+sq;  Fl-+F2. (11)  

The Froude number for this flow therefore satisfies F2 N 1 as E + 0. We now suppose 
that there is a region of ([,C)-space where the solution of (6)-(8) can be expressed as 
an asymptotic expansion in E ,  as E-+ 0,  with the dominant terms given by the solution 
of (9) and (10). We note that, for the small wave, the expansion for $ will require a 
term O ( d )  and so a corresponding term must appear in the expansion for 7 even 
though the amplihde of the small wave is O(s) .  Thus we write, for E +  0, 

where {$I, qI) is the solution of (9) and ( lo) ,  and {$11, yII) is the solution of (9) and (10) 
under (1 1) .  It is convenient to regard and rII as exact solutions and therefore these 
functions depend explicitly on e ;  a t  a later stage we can use suitable asymptotic 
approximations when examining higher-order terms. The interaction of the two waves 
is embodied in the functions $n and +In. 

The procedure is now quite straightforward: the expansions (12) and (13) are used 
in (6)-(S), and the surface boundary conditions are evaluated on x = 1 +rI([) by 
assuming t,he existence of suitable Taylor expansions. The leading-order terms (as 
E +  0) constitute the exact solution (dr, qI), and thereafter like powers of 6 are collected 
together. The problems for each {c$~,  +In} are, in principle, elementary for they require 
the solution of Laplace’s equation with boundary values given on a known surface. 
However, it is clear that the higher-order problems cannot be expressed in a simple 
form, but we shall mention one or two results that turn out to be significant. We omit 
the details (which are quite lengthy), and record that the leading-order interaction 
terms can be written as 

$1 = 9(5) $1p 91 = N) 715’ (14) 
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where f([) is arbitrary. To describe the next order we introduce O(6, z ) ,  which satisfies 
Laplace’s equation, with 0, = 0 on z = 0, and 

+ ~ h y r f + ( y - h - 2 h y ~ l ) r ~ $ ~ f ] ’  on x = l + q I ,  (15a) 

where the prime denotes the total derivative with respect to 6. Further, we define 
h(5) such that 

+!;+?I O6dz on z = l + y I ,  (15b) 

where y is an arbitrary constant and rIIo, $IIo are the dominant terms in the expansions 
for ~ I ~ ( < ; E ) ,  $II(<,z;s) as e+O. (Although qIIo is known completely, it should be 
remembered that $&,, is defined only to within an arbitrary constant.) 

The terms in {$$n, qn} that involve f are seen to be just those arising from the Taylor 
expansions of 

$1 (6  + & 4  and rd6 + €a?) with f = Y$IIO(C), (18) 

and so describe the bending of the characteristic, whereas the rest of the solution (in 
(16) for example) describes a more complicated interaction term, which to this order 
is proportional to rIIo. The general form of the solution corresponds to that obtained 
by Miles (1977a) for two small solitary waves. However, the asymptotic expansions 
derived here do not enable the value of y (see (17)) to be determined uniquely, and so 
precise comparison with Miles’ result is not possible a t  this stage of the analysis. We 
shall now show that y can be obtained by matching the expansions (12) and (13) with 
appropriate far-field expansions valid in the tail/precursor of the large wave. Only 
when y is known can we examine the basic expansions for any non-uniformities that 
might arise as h varies, i.e. as the angle between the waves is altered. 

3. Far-field expansion 
Although it is quite in order to examine the basic expansions as I.$] +co directly, 

and thereby impose suitable boundedness conditions to determine y ,  it turns out to be 
expedient to examine the far field explicitly. The reason for this is twofold. Firstly, 
a discussion of the near field involves the asymptotic behaviour of 0 and R (see (15)) 
as 161 + co, and it  is rather more straightforward to obtain the equivalent information 
from the far field itself. Secondly-and this is the more telling argument-we shall 
eventually require these far-field expansions to permit matching to other far-field 
solutions valid onIy for special A. 



5 4  R.  S. Johnson 

Before we can attempt the construction of the far field, we shall require the asymp- 
totic form of the large solitary wave for 161 -+ 00. In  fact this is well-known, and easy 
to  derive, yielding the result that if 7I N aeiac then 

#I N T (aFl/sin a )  eiac cos az as E-. f a, (19) 

FI = ( tana) /a  (0  < a < &r) ( 2 0 )  

where 

is Stokes' result and it is supposed that a(Fl) is known. Now from the original equations 
(6)-(8)) or from the basic expansions (12) and (13), it is clear that the appropriate far 
field is where 5 = O(s-3) and so we introduce 5 = XE-4. The expansions for 7 and 4 
are now assumed to take the form 

where exponentially small terms (exp ( -na 1x1 s-i), n = 2,3,  ...) have been omitted. 
As before, the procedure is systematic, and follows the outline given in 8 2 except that 
in this region the surface boundary conditions may be expanded about z = 1. The 
problems a t  each order enable {6n, fin} to be found in terms of certain functions which 
themselves are not determined until later in the sequence. The first three sets of 
functions are described below, although the details are not included. 

Using Stokes' result ( 2 0 ) ,  we find that 

8, = xo, 6o = T (AoFl/sina) cosaz, (22) 

where & X ,  5)  is an arbitrary function. The next order yields 

(23) 
8, = ~~lTF,cot~(Fl'~oX+A^05).  

$1 = & (xlFl/sin a )  cos az - (Fl/sin a )  (Jox + AAoog) x sin ax, 

where Al(X, 6) is arbitrary, but with 

and we have made use of F2 - 1.  
If we note that it must be possible to choose 2, = A o ( X ) ,  that is when yrI = 0 and 

only the large wave exists, the required solution of (24) is just A^, = constant. Finally, 
the equations relating I?, and 62 require that Al(X, 6) takes a particular form, namely 

The surface profile, for example, therefore becomes 
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1 1 .1  1.2 1.3 

FIGURE 1. The variation of the critical angle with the 
Froude number F ,  ( 3  1) of the large wave. 

I 

F ,  

and this is to match with 

It is clear that these two expansions do indeed match if we choose 

.. 
(11) y = - A,( 1 + 2hF' + u21':) 

2F,(h - he) 

The comparison with Miles ( 1 9 7 7 ~ )  can now be completed, and this serves as a 
check on the calculations presented so far. Since Miles considered two small waves, we 
must allow u-f 0, Fl+ 1 in order to describe the corresponding model here. From (25) 
it  follows that he-+ 1, and then from (30) y+(l+2h)/2(1 - A )  (which is just &-l- 1 
when expressed in terms of K = Q( 1 - n, . n,) as introduced by Miles). The agreement 
with Miles ( 1 9 7 7 ~ )  is now complete in every detail (to this order), and in particular we 
can observe that both the basic and far-field expansions are not uniformly valid as 
h + A c :  this is equivalent to the 'strong' interaction of Miles as h-f  1. However, the 
angle a t  which the strong interaction occurs now depends on the amplitude of the 
large wave, and only for small-amplitude waves does the breakdown coincide with the 
waves becoming nearly parallel. Further, the large wave is limited by the wave of 
greatest height and so he = cos (8, - 02), is in turn limited; the variation of the critical 
angle (0, -8,),, for values of Fl up to about 1.29, is given in figure 1. As the amplitude 
increases so the critical angle varies from zero (parallel waves) to a maximum value of 
approximately 63.5". If h is not close to A, then the representations given in (12), (13) 
and (21) are uniformly valid and the solution describes two predominantly unaltered 
waves with a weak interaction, part of which slightly distorts tjhe characteristic of the 
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larger wave. However, if h - A, is small we must turn our attention to the construction 
of new basic and far-field expansions. 

4. Strong interaction : basic expansion 
The appearance of the non-uniformity in the far-field expansion, (27), or the basic 

expansion (28) with y given by (30), shows that these asymptotic expansions are not 
uniformly valid when h - A ,  = O(e.9). Thus we introduce 

(31) 

where A is a constant (positive or negative) which is assumed to be O( 1) as e+  0. The 
form of (31) embodies some properties of both the large wave since A, = hc(Fl) (noting 
that we have used F, - l) ,  and the small wave (via the amplitude parameter e). 
Although to leading order (31) is therefore dominated by the parameter Fl of the large 
wave, we shall demonstrate that the character of the solution is crucially dependent 
on the precise value of A. Of course, for a pair of arbitrary-amplitude waves, we can 
anticipate that A, = h,(F,, a,; F2, a2), symmetric in F', F2 and a', a,; (25) is the limiting 
form asa,-+O(F,-+l). 

We may proceed with the basic (or near-field) expansion in much the same fashion 
as given in $2, but of course here A is expressed using (31). Also, it is clear that the 
solution in this region cannot be described in terms of the two basic waves 

h = A, + ebA, 

rr(8 + %(C; c), 

together with some suitable interaction. Consequently we seek a solution of the set 
(6)-(8), using (31), in the more general form 

m m 

whence it is immediately evident that {$o,  r0} must satisfy the equations (9) and (10) 
defining the large solitary wave. Moreover, since these equations do not involve 5 
explicitly, the most general solution available to us is 

ro(& 0 = rr(t+f(!3), $ O ( t ,  612) = $ I ( t + f ( C ) , Z ) ,  (33) 

where f(6) is arbitrary. Comparison with (18) indicates that (33) is of precisely the 
right form if matching is to be possible. 

The next order is rather more involved. Since y appears in the complicated inter- 
action term a t  O(e) when A - A ,  = O(1) (see (16)), essentially the same type of inter- 
action must now be evident a t  O(e.9) when A - A ,  = O(s4). Corresponding to (15)-(17) 
we introduce 

GZz+ O,, = 0, with 0, = 0 on z = 0,  (34a) 

$ o z @ ' +  ($o*)y+7a 0, dz = W c r &  P C F l  - 1) T O $ O [  - - M I  +ro) V l Q O ,  - 7011' 
0 

on x = l + q 0 .  (34b) 
If we define H ( c + f )  such that 
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then 

The solution for 

71 = f ' ( 6 )  H(6+f  ), $1 = f ' ( 6 )  [Ad$,+ W + f 7  41. (36) 

(i.e. 0 )  can always be shifted by an arbitrary function of 6, and so 

That is since a wave interaction is being considered the small wave causing the 
distortion must exist somewhere: we choose it to be in the region 5 > 0. We make no 
assumption about the form of the small wave as $-+ -a (that is 'after' the inter- 
action near 6 = 0) which requires the solution of (34) and (35). This is an important 
point to which we shall return later. 

The other arbitrary function f ( < )  that appears here gives rise only to a bending of 
the characteristic of the large wave due to the presence of the smaller wave (see (33)), 
and therefore cannot contribute to the shape of the interaction profile (to leading 
order). The dominant term in this respect is df ' H ,  which again requires the solution 
of (34) and (35): it would seem to be impossible to extract any relevant details without 
recourse to a numerical treatment of (34) and (35). However, difficulties can also arise 
fromf(5) for certain values of A; essentially this comes about because of the non- 
existence of a real f ( 5 )  for which matching can be accomplished. With this proviso 
(which we shall discuss in detail later), the matching of (33) to a suitable far-field 
solution should enable f(6) to be determined. Further, it should then also be possible 
to ascertain the nature of the profile in 6 < 0. 

5. Strong interaction: far-field expansion 

solution 
The far-field expansion is expressed, as in $3,  by using X = and then seeking a 

7 %,(5; 4 + [ 5 dnH,(X, 5)]  exp ( -ax€-% ] (38) 
n=O 

1 W 

$ N &brr(5, z ;  E )  + E + ~ O ~ ( X ,  5, z )  exp ( -axe-$), 
[n=O 

where only the dominant exponential terms are retained (see (21)), and matching is 
performed into the region X > 0 where the small wave {g511, qIr} is given. The leading- 
order problem then corresponds with (22), yielding 

H, = A, (X ,  C), @, = - (A,E;/sin a) cos CLZ, (39) 

A,, = 0, (40) 

where A,(X, 6) is arbitrary. The next order requires that 

which follows when A, (defined by (25)) is introduced. The solution for {O,, H,} can 
then be written as 

(41) 1 Hl = A ,  + Fl A&aF1 -cot a), 

Ol = -(A,F,/sin a)  cosaz- (A,FIAi/sina)zsinaz, 

where A, (X ,  5)  is arbitrary and now A ,  = A,([), with the prime denoting a derivative. 
Finally, the equations that are satisfied by {a2, H,} imply that 

A , x  = O(CL (42) 
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where @({) is known in terms of A,(C). Since (42) leads to a term Xg(C) in A,,  the 
expansions (38) are not uniformly valid as X-+ co; we might surmise that it is necessary 
to  choose @(C) = 0. However a more careful examination is needed, before we accept 
this interpretation of (42), by constructing a ‘far far field’ where c = O(e-1). This 
results in a partial differential equation for A,(x,  [), x = e l ,  which replaces (42): 

C d o ,  = A055 - Cl AAo, + c, 711oAo. (43) 

The right-hand side of this equation is proportional to @(C) in (42) and the C, (n = 1,2, 3) 
are constants (see below). As 151 3 0 0  so the expansions (38) must match to  the ex- 
ponentially small regions of the large wave where the X-dependence is explicit, for 
example 

7 N aexp( -aX/e ) ,  as <+ + X I ,  

and this is possible only if A,(x,  6) is independent of x.t Hence the equation for A,(C) 
(from (43) or (42)) is 

where 

and C, = 2aF1(&l -Pl)/C4, (see (43)),  

with 

A: - CIAAh + Cz&oAo = 0, (44) 

(45) J 
C, = 2F1a/(hcc4), 

C4 = (1 -A: )  (Fl/Ac - 1) + 2a2F:hc. 

C, = a2( 1 + 2F1hc + a2Ff)/C4 

The solution to (44) is to  be determined such that it satisfies certain matching and 

(i) as [+ +a, A,-+a to  match; 
(ii) as c-+ - co, A ,  is bounded to give no non-uniformity between the large and small 

waves ([ < 0,  5 > 0); 
(iii) IAl -too to match with the far-field expansion valid for h-A, = O(1) (this 

serves as a check on (i) and (ii), and determines q5110 uniquely); 
(iv) 5-t +00 to match to the asymptotic behaviour of the near field, which then 

determines f(c). 
This final condition (iv) is the most significant of the matching conditions, for i t  
enables the large wave to be completely determined. We shall describe these various 
conditions in a little more detail as we use them, but first it is convenient to re-cast 
the equation for A,( [ ) .  

Equation (44) involves rIro(6), which is the dominant representation of the small 
wave (which is given in E > 0 ) ,  and this takes the form 

boundedness conditions. These are as follows : 

qrIo = sech2 ($43  g ) .  

A: - 4 3  pAI, + $v( 1 + v) sech2 ( 4 4 3  6) A ,  = 0, 

(46) 

The equation for A,( [ )  therefore becomes 

(47) 

where we have written 
Cl A = 4 3  p, v2+ v = $7,. 

The parameter p varies as the angle between the waves (measured a t  infinity) is 
altered. As the angle between the waves increases from zero (parallel) so the value of 

t In fact an even more persuasive argument is used later (see (62)) which can be exploited 
here: A&, 5) diverges for either 5 + + co or - co. 
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p-which in this region is positive-decreases. At the critical angle (given by A = A,) 
p = 0, and if the angle increases still further then p < 0 and increases in magnitude. 
The values of v are fixed for a given large wave. 

Now the appropriate solution of (47) can be obtained by first introducing 

z = &( 1 - tanh 443 5) ,  
whence we have 

d2A dA 
z(1-2) -O+ dz2 (1 +p-  2 x ) A  dz + v(1+ v )  A, = 0, 

which is a hypergeometric equation. Let us first suppose that p > v > 0 (we may 
always choose v > 0,  since our solution is independent of the specific root of (48b)); 
the solution that is bounded a t  both x = 0,  1 is 

A ,  = K(a ,p ,  v )  F(1+ v, - v ;  1 +p;  z ) ,  (51a) 

where K is an arbitrary constant. Now as [+ + co (i.e. z --f 0, for p, v fixed) we enter 
the region ahead of the large wave ([+ + m) where (19) is valid, and so we require the 
matching condition (i). Thus we must choose 

K = a .  ( 5 2 )  

If we apply the matching condition in p, i.e. R (iii), then 

A o - a ( 1 - ~ C 2 ~ )  as p-++m; 

so that from (38) 

which can be cast into a more recognizable form by observing that we may write 

W 

$110 = -s, 7IIO(”)d5’ = -2.JW-tanhQ435)1 

which fixes the arbitrary constant in q5110. The expansion (38) therefore becomes 

7 - ef;;+u l+-$lIo e x p ( - a X d )  as A-fco, 

and this matches precisely with (27) (upper sign) when we use (45) and (29). Thus the 
solution (51a),with (52),matchestotheadjacentfarfieldwhereg > Oandh-A, = O(1). 
(The cases that arise when 0 < p 6 v will be dealt with in 5 6, but we can note that the 
argument just outlined is still applicable even though A,  may not be positive for all 5.) 

The situation for p < 0, and in particular forp < - v (v > 0) ,  can be described most 
conveniently by introducing 

whence the solution for A, that is bounded at  both z’ = 0 , l  is just 

( :; 1 

’ = 1  (1 + tanh Q 4 3  Y), 

A ,  = K ’ ( a , / ~ , v ) F ( l  + v ,  - v ;  ~ - , L L ; z ’ ) .  

Now the matching condition (i) requires 

3 F L h f  I20 
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[ = O  

FIGURE 2. Diagrammatic representation of the wave fronts : large wave along = 0, small wave 
along 5 = 0. The given waves (in 5 > 0, 6 > 0) are denoted by the heavier lines. The spatial 
matching and boundedness conditions are indicated by the arrows numbered (i), ( i i ) ,  (iv); for 
details see text. 

and then (iii) is satisfied if we choose 

5 
$110 = 1 r110(5')dCf = 24P ( 1  +tanh3435),  

-m 

noting that K f + u  a s p +  -a. Since --GO < < < co implies 1 > z > 0 and 0 < z' < 1 
(both ordered with <), the solution 

is the mirror image of (51 a )  in the line h = A, (p = 0) ,  up to a multiplicative constant. 
Thus, a t  least for lpl > Y ,  it  is sufficient to  discuss the solution (51u), which can be 
rewritten as 

where P;p is the associated Legendre function. This alternative to (51a) will prove 
useful in our later discussion. 

Finally, the matching condition (iv) requires 

and 
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t o  be identical. This is possible, provided A ,  3 0, if we choose 

61 

= In (aPo(6)) .  (54) 

The form - and in particular the location - of the large-wave solution is now com- 
pletely determined, and it remains for us to discuss the consequences of using (54), 
and also the nature of the solution in 6 < 0. Both of these aspects turn out to be quite 
involved. However, so far, the analysis has been quite straightforward with the 
application of suitable matching conditions; for reference the spatial matching 
employed here is represented diagrammatically in figure 2. 

Let us now consider the structure of the solution in 5 < 0. This proves to be a real 
difficulty, mainly because we do not know the solution to (34), (35). Consequently any 
statements must be, of necessity, rather incomplete: the solution of (34), (35) as 
5 --f - co would enable a comprehensive matching into the far field, X c 0. As i t  is, we 
must address this problem by examining the far field alone, but with the given 
matching condition involving f (6). Let us first suppose that the asymptotic expansion 
for X < 0 corresponds to (38), so that 

for example. It then follows that 

g(6;e) = 7II(5+6O:o;4 (56) 

A~+CIhA~+C2sech2(fr2/3 (C+Q))Ao = 0 (y > 0 say) (57) 

aexp (ail = AO(6L (58) 

Ao(<)Ao({)  = a2 (const). (59) 

where Q (a constant) is an unknown phase shift, and also g o ( X ,  g) = i?,(c), where 

(see (47), (48)). The matching condition for Jo(C) is that 

wheref(C) is already known (see (54)), and so 

However, it is readily verified that (57) does not admit a solution l /Ao for any c, 
unZess Y = 1; we shall return to this special case later. Certainly, if v =+= 1,  then an 
alternative asymptotic expansion must be sought. 

The simplest generalization is to replace (57) by a partial differential equation, for 
a wider class of solution is then available. I n  particular, if we construct the corre- 
sponding equation to (43), in the far far field ( = O(e-l), then the matching condition 
becomes an initial condition on x = 0. It turns out that &x, 6) now satisfies 

-Cdo,  = ~ ~ ~ ~ + C : ~ % ~ + ~ 2 B r ~ O ~ 6 + 6 o ~ ~ o ~  ( 60) 

where x = €6, the constants are as given in (45), and 

AO(o, 5 )  = aexp (af) = a2/Ao(6) .  (61) 

The formal solution can be written 

J O  
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where A(a) is supposed chosen so that (61) is satisfied, and 

F ( ~ ; u )  = F ( ~ + Y ,  - v ;  1+4& (27+C1A);Z) with T ~ + C , A T + C ~ U  = 0. 

But 9 ( ~ )  2 0 as A $0, and so the solution (62) diverges as c+ F co (vertically ordered) 
and hence does not exist; matching as 1st +a is once again impossible. 

We have therefore found that matching to the near field - although the details are 
not clear - certainly cannot be accomplished if g = O( 1)  ( Y  $. 1), e-+ 0. Let us suppose 
that g is larger than O( 1); then from (60) we see that xo = 0 which again does not allow 
matching. Thus we must perforce assume that g = o(1) in ( 5 5 ) ;  the equation for 
Ao(x, 5)  becomes 

with the initial condition (61). The solution is 

-c3A0, = A O c c + c l n A O c  (x < O ) ,  (63) 

-c f 
Aocx, 5)  = $a (F3) 1 -W eXP[af(Y) +c3(y-Y)2/4x1 dY> (64) 

where Y = 5-C1Ax/C3, and (64) does permit matching as 15) +co, since 

Xo(X3 C)+aexp[af(5)1. 

Because this approach appears to be the only one consistent with matching to  the 
near field we can expect that ( 5 5 )  will now match with (27) as A +  co. However, this is 
possible only if g(5 ;e )  matches as [A]  -+a, i.e. if g-+qIIo([) as IAI +co, and thus g 
cannot be uniformly o( 1). Unfortunately we are unable to determine g; this is essen- 
tially because we have no solution of (34), (35). To proceed further we shall assume 
that g matches (and otherwise our solution is evidently satisfactory). We introduce 
X = XE-4, then as e+ 0 

A ,̂ - a e x p [ q ~ ~ ~  = a 2 / ~ ~ ( 0  N a ( l - - ~ ~ ~ o )  c2 as ~ ~ l + . o ,  
ClA 

which does match with (27) (lower sign). Thus the only solution consistent with the 
equations and matching conditions (modulo the form of 9)  describes a small wave 
which essentially does not penetrate into 6 < 0. However, any vestigial small wave is 
still evident by its interaction with the exponential tail of the large wave. There is some 
observational evidence to suggest the disappearance of a wave front after ’ an inter- 
action, although this type of solution should not be regarded as analogous to the 
resonant triad (as relevant in the 2-D KdV equation for example). 

The case v = 1 is worthy of closer inspection. If g satisfies (56) then (57) becomes 

+ 4 3  p.&, + # sech2 ($43  (Y+ 5,)) A. = 0, 

which has the solution 

a X o  = - [ p  - tanh (943  (Y+ c~:o))I (p > 1 if a. > 0 1 ,  
P-- l  

where 6,+a as [+ $00. Also, from (53), it  is clear that 

a 
A ,  = - [p+tanhi2/351 (p > v = I ) ,  

P + 1  

tanhiJ35,= l/,u (p > 1 ) .  
and then A o d ,  = a2 if 
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So, when v = 1, there does exist a solution for which the small wave is present in 
5 < 0,  but such a solution requires g = 0 ( 1 )  as e +  0. Now we have seen already that 
we require g = o(1) with g+rII, as [ A /  +a, and thus the solution just outlined is 
applicable if also v+ 1 : exactly these conditions pertain as a+ 0. From (45) and (48) 
it follows that v+ 1 and C, - l/a as a+ 0, i.e. 11.1 + co (which corresponds to the result 
of allowing 1 A1 -+ co, a fixed). Since the limit involves a+ 0 we can anticipate a further 
match with the Miles solution. This is easily verified, for the large wave then becomes 

1 ( 3 e 1 ) " 5 - 3 W ( 1 - T ) ] ,  2 1 - h  a = ( 3 4 )  + 0, T = tanh ( 3 4 3  6); 

and using the phase shift of the smaller wave this yields 

Both these results match the Miles solution, for example by taking the strong- 
interaction limit (K-+  0 )  of the weak-interaction solution in Miles ( 1 9 7 7 ~ ) .  (It turns 
out ( $ 6 )  that Y = 1 a t  Fl E 1.225, but this does not involve the limit a+O; thus A 
(or p)  remains O( 1) and so, under our assumption, g = o(1) and the solution above is 
not relevant. ) 

> 0) close to the critical angle, the interaction with the 
large wave produces a change of O( 1) in the form of that wave. I n  particular, the wave 
front is given by c+ f (6) = 0, to leading order, which implies a phase shift of 

With the small wave (in 

[f(6)l% = -f(-co). 
Since for our solution we require g = o( l ) ,  one is tempted to  envisage the small wave 
losing its identity in its Herculean effort to bend the large wave. 

6. Strong interaction: the role of f(6) and its breakdown 
The dominant behaviour resulting from the oblique interaction of a large and small 

solitary wave has now resolved itself into a discussion of the phase shift f(<). It has 
already been noted that f(6) can be defined by (54) only if A, 2 0;  the possibility that 
A, might change sign clearly becomes a central issue. To this end we must examine the 
relevant properties of P;p, using appropriate values of p and v. If A, can indeed 
change sign - it is certainly positive in a neighbourhood of T = 1, see (53) - then an 
alternative matching procedure might have to be adopted. If A, > 0 everywhere then 
f(<) can be determined from (53) and (54), and in particular the phase shift can be 
obtained: this is all quite straightforward. If, on the other hand, A, = 0 a t  T = - 1 
(6 = - 00) then the phase shift is essentially infinite and the interaction profile now 
does correspond to the resonant case of Miles (1977 b ) .  Some typical results for both 
A ,  > 0 ( -  1 < T 6 1) and A,  = 0 (at T = - 1) will be presented in $7 .  

The associated Legendre function, for arbitrary degree v and order p, cannot be 
expressed in a simple closed form. However, the distribution of zeros is well-known 
(see Hobson 1931)) as well as the asymptotic behaviours near T = rfi 1 (see also 
Erdblyi et al. 1953). For the application intended here we can note that v is determined 
from (48b) for a given large wave, i.e. for a fixed PI (which also prescribes hc). The 
parameter p is proportional to  A ,  and therefore represents the angle between the two 
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F ,  

FIGURE 3. The variation of the degree v of the associated Legendre function with the Froude 
number F,  (2 1) of the large wave. (The curve crosses v = 1 (again) at F ,  2: 1.225.) 

o < v < 1  1 < Y < 2  Number of zeros and positions 

(a )  lrul ’ v lrul ’ v 0 
( b )  (PI = v IPI = v 
(4 
(4 
( e )  

1 , a t T  = -1 
1, on ( -  1, 1) 
2, at T = - 1 and on ( -  1, 1) 
2, on ( -  1, 1) 

0 6 lrul -= v 
- (PI = v - 1  
- 

v - 1 <  IpI < v 

0 6 1/41 < v - 1  

TABLE 1. Number and positions of zeros of A,(T).  

wave fronts (measured a t  6 ,  [+ +a). First, the value of v is found from (48b) using 
(45), (25) and (20); the variation of v with Fl is shown in figure 3. (The curve crosses 
v = 1 a t  about Fl = 1.225.) The highest wave corresponds to a value of about 1-04, and 
v otherwise lies in the range 0.96 < v 6 1.04, approximately. The limit of infinitesimal 
waves occurs where v-+ I as Fl+ 1, which is therefore the neighbourhood applicable 
to  the Miles ( 1 9 7 7 ~ )  theory (see $5). 

The number of zeros of P;fi(T) on [ - 1, I] may be described for varying ,u at fixed v, 
bearing in mind the allowed values of v. These results are used to give table 1 for the 
two cases of interest, namely 0 < v < 1 and I < v < 2, and by virtue of the symmetry 
in h = A, (see (51a, b)) we can combine both ,LL > 0, ,u < 0. As the angle between the 
waves varies from nearly zero so I,uI decreases, but provided l,ul 2 v no zeros appear 
on ( -  1,1]. As [,ul decreases still further, a t  most two zeros will occur. Thus for 
cases ( a )  and ( b )  t,he matching condition (54) is valid, that is whenever I,ul 2 v. 
The remaining cases (c ) - (e ) ,  involve a solution (for A,) which changes sign a t  a 
finite value of [; in these circumstancesf([) is no longer real for some 5, and hence the 
matching procedure must be reassessed. 

First, however, let us consider the path of the large wave; in particular the peak of 
the wave lies along c+f([) = 0, to leading order. As c+ + co, sof($+ 0 and the peak 
is along 6 = 0 as originally given. Now let A,( [ )  first be zero a t  5 = el (finite), i.e. 
A , ( [ )  > 0 for [ > cl, whencef({)+ + co as <-+ 5, and the peak of the wave asymptotes 
to 6 = as (-+ -a (see figure 44. Along 5 = el the wave is of zero amplitude and 
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for 6 c cl the solution is no longer defined (in the sense thatf(c) is no longer real). This 
leads us to examine the profile in the neighbourhood of 5 = ell and from the structure 
of the original equations - or the asymptotic expansions already discussed - we 
consider the region where the amplitude of the large wave is O ( d )  as $-+ i- m. Thus we 
transform under [+ - (1/2a) In c + 5, which therefore ensures that both 7 and $ are 
O(d) ,  and expand 

as 6 -+ 0. If these expansions are to match with (32), as olf -f + 00, then the exponential 
terms (in 5) require that 

n+l n+l  

m = l  m = l  
hn = 2 A n m ( C )  e-ma', \m = X $n,(S, 2) c r n a E .  

The equations involving {$oil A,,), {@ll, All] and (kZ1, AZl) then follow from (39), (41) 
and (44) respectively, and in particular 

~ ~ , - ~ l ~ A b + ~ , T I , o A , l  = 0, (66) 

where C,, C, are given in (45). The required solution to  match (for ,u > 0, say) is just 
(53), so Ao,(c) = A,,(c). In  other words the matching condition is used to determine 
the amplitude of the wave profile directly, and since Ao(c) can be negative the surface 
profile can lie below t'he undisturbed level. Is  this a physically realistic solution? In the 
region c > 0 (where the matching has been performed) the solution is a t  most O(s4) 
and decays exponentially as 5-t + 00, a t  fixed 5. The amplitude remains bounded in 5 
for ,u + 0, although if ,u = 0 the amplitude grows as c+ - m: this special difficulty is 
not worthy of further consideration because of the behaviour that pertains in 6 < 0, 
as we shall see. The asymptotic solution (65) is valid for all 5; this is quite easy to 
justify since the matching to the dominant exponential term e-at is valid even if 
5 < 0. As f+ +m ([+el) so 

T I  aexP[-45+f) I '  

and [ is arbitrary (but finite). In  consequence the matching just outlined to determine 
Aol(g), which requires terms e-mat, is still applicable.7 However, the solution in 6 < 0 
with 5 < cl is wholly - or in part - negative and increasing as C-+ - m; this cannot 
describe an undisturbed surface at infinity (and away from the wave fronts). Thus the 
solution for (,u[ < v is not consistent with the given conditions at infinity. If I,ul < v 
then either no steady solution exists, or at  least no steady solution of the form discussed 
here is possible. This situation is analogous to the non-existence of a regular reflection 
encountered by Miles (1977a). In fact it  is straightforward to demonstrate that our 
criterion l,ul < Y and Miles' match. From Miles ( 1 9 7 7 4  we have that. there is no regular 
reflection if 

(at - at) ,  < $ sin2 i (o1 - 0,) < (at + a+)2, 

Alternatively we can examine the neighbourhood 5-5, = O(tb) ,  where 7 = O ( d ) ,  for 
arbitrary E ;  appropriate matching leads to the same conclusion. 
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FIGURE 4. A schematic reprcsentation of the varioiis types of wave interaction. The solid lincs 
denote the wave fronts (at infinity) : -, largo wave; , small wave. The broken line 
indicates the critical angle, and the circle encloses the interaction region. (a,) Weak interaction. 
( b )  Strong interaction with lpl > v ;  thc hatched region indicates where the reduced-amplitude 
srnall wave exists. (c) Strong interaction with jpl = v ;  the resonant case. ( d )  Strong interaction 
with lpl < v (for reference only - this solution does not rna.tc,h to a rca.list.ic behaviour at infinity). 

where a; are the amplitudes of the solitary waves. For large az/al,  this yields 
1 1  

a2 - 2ai a$ < + sin2 +(o1 - 0,) < a2 + 2ai a;, 

approximately. I n  our criterion we let a+ 0 (decreasing the amplitude of the larger 
wave) and use the results 

1 
Fl N 1, A, N 1 -+a2, c, N a, c2 N $, v N 1,  

whence 11.1 < v becomes 

a2 - 2a( 3e)j < 4 sin2 +(8, - 0,) < a2 4- 2a( 3c)*, 

and since a = (3s1)2, where c1 is the amplit8ude of the larger solitary wave, the criteria 
are identical. 
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Thus our theory produces the same sequence of interactions as obtained by Miles 
( 1 9 7 7 ~ ) .  First a weak interaction if A is not close to A,; then a strong interaction if 
A - A ,  = O ( d )  and Jpl > v ;  finally no realistic solution if I,ul < v. These various 
possibilities are sketched in figure 4. 

7. Discussion 
By using the method of matched asymptotic expansions, the problem of the 

oblique interaction of a large solitary wave with a small one is examined. As far as this 
approach allows, we construct the form of the solution both away from and close to the 
critical angle. The fact that the large solitary wave is not known in closed form makes 
the study of certain aspects of the problem, e.g. (34)-(36) (or (15)) ,  all the more 
difficult. Complete solutions to these particular equations would shed further light 
on the nature of the interaction. However, the part of the interaction that is associated 
with the distortion of the characteristic of the larger wave is described in some detail. 
Bearing in mind this limitation, which is circumvented whenever possible by the use 
of appropriate matching conditions, let us give a brief summary of the results we have 
obtained. 

The basic asymptotic expansion assumes that there exists a representation of the 
solution as a large wave plus a small one plus interaction terms. The expansion para- 
meter is just the (non-dimensional) amplitude of the smaller wave. It is shown that 
this expansion can be constructed but that  it is not uniquely determined. The arbi- 
trariness is associated wit,h the dominant interaction term, whose form is known but 
which contains an unknown multiplicative constant (see (17)). This constant is found 
by matching to the far-field solution, where the dominant term is the small wave 
together with exponentially small terms associated with the outer reaches of the 
large wave. The fact that, ultimately, only the asymptotic behaviour of the large wave 
is required means that the problem remains fairly tractable, although higher-order 
terms in the basic expansion cannot be obtained. The constant turns out to  be pro- 
portional to l / ( A  - A,), where A, = 2F1/( 1 + F;  + a2F;1) describes the critical angle, and 
in the special case of two small waves the details agree with those given by Miles 
( 1 9 7 7 ~ ) .  In  particular our results generalize the important observation made by Miles 
that the basic asymptotic expansions are not uniformly valid as A+& (A,  = 1 for 
Miles). For two small waves the non-uniformity occurs as the waves become nearly 
parallel, but for a large and small wave the angle between them can be as large as 
about 60". This raises the question of exactly what physical phenomenon generates the 
singularity. For A, = 1, many alternatives could be suggested, e.g. relative propagation 
direction, large region of overlap (and therefore interaction), energy transfer from one 
wave to the other. Miles (1977a)  gives no guide, but it should be possible with our more 
general expression for A, (involving Fl and a) to suggest an interpretation of the 
critical angle. 

In the exponentially small regions of the large wave, the wave profile is a function of 
[a(nl .x -k; t ) ]  (see (4) and (19)) .  Thus the group speed can be defined as (dldcx) (aF,);t 
with the help of Stokes' result (20) this yields 

Cg1 = *Fl( 1 + l/FT + aZF?), 
t We use the formal definition more usually associated with u purely imaginary: the same 

result can be obtained by computing the (local) energy flux and energy density. 
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where cgI is the group speed of the ‘tail ’ of the large wave. Hence the definition of A, 
can be re-cast as 

cgInl.nz = 1; (67) 

and noting that the group (and phase) speed of the smaller wave is just unity (to 
leading order), (67) can be written as 

(cgIIn,-cgIn,).nz = 0, cgII = 1. 

Geometrically, this states that the propagation of energy, relative to that for the 
larger wave, is parallel to the wave front of the small wave. I n  other words, on one side 
of the large wave energy is being propagated directly towards the interaction region; 
on the other side energy is propagated away. The convention we have adopted implies 
that  energy is entering the interaction region from 5 > 0 and it is precisely this energy 
input that  dramatically affects the wave profile. On the other hand, in 5 c 0, energy is 
propagated away along the small wave: this suggests that  there might be a, reduction 
in wave amplitude in that region. This is in agreement with the analysis presented here 
where it is found necessary to  construct a solution that requires the small wave to have 
a reduced amplitude in 6 < 0. Thus the essential description of the nonlinear inter- 
action is that of a significant energy transfer directly into and possibly away from this 
region when h = A,. 

The development of the solution for h = A, + dR - the strong interaction case - 
follows the same procedure as just outlined. The solution requires a basic expansion 
and a far-field expansion, although there are now important differences between the 
form of solution in 5 > 0 and < 0. Close to the interaction (and the large wave) the 
only term in the asymptotic expansions that can be found is the first. This solution is, 
not surprisingly, the large wave itself, but it incorporates a phase shift f(<), an arbitrary 
function of <. This unknown function is determined by matching to the far field (6 > 0) 
where the small wave is given. The exponentially small terms associated with the 
larger wave are found completely to leading order by imposing appropriate matching 
and uniform validity conditions. The resulting solution enablesf(<) to be expressed in 
terms of a function A,(<), provided A,(<)  3 0, where A,(<) is a hypergeometric function 
related to P;“. The solutions for p 2 v, p < - v are essentially mirror images of one 
another in the line h = A, (p = 0), and if l,ul < v then we have seen that the resulting 
solution does not satisfy the conditions that pertain a t  infinity, and Miles’ criterion 
for the non-existence of a solution is recovered. 

The resonant solution given by p = v (for the case p > 0), where A, = 0 at  T = - 1 
(5 = -a), is worthy of some further comment. Since P;” is known in closed form (see 
Erdklyi et al. 1953) we can write 

A, = 2-”a(l +T)”, T = t a n h i  J3<, 
whence 

af(<) = -vIn i ( l+ tanh+J3<) .  

The peak of the large wave lies along 6 +f(<) = 0, to leading order, and as <+ - 00 this 
becomes 

Thus the large wave is turned sufficiently so that it is situated between lines 5 = con- 
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stant, 5 = constant. This type of interaction is represented in figure 4 ( c ) ,  and corre- 
sponds to the classical resonant wave (see Miles 1977a, b) .  

The problem of determining the solution in E < 0 when A - A ,  = O(s4) can be 
accomplished only indirectly. The difficulty stems from not having available a solution 
of the set (34)-(36)) but we are able to make use of the matching condition involving 
f(5). In 95 it  was argued that, sincef(5) is known in terms of A0([) ,  the matching to the 
exponentially small terms is possible only if the leading term is o ( E ) .  This results in a 
diffusion equation to describe the amplitude in the tail of the large wave. The 
corresponding solution then matches in all particulars and decays its [-+ -a. In 
consequence, close to the critical angle, the small wave - which is given in the region 
6 > 0 - does not penetrate through the larger wave to produce a wave of O ( E ) .  
The matching condition cited above fails to determine precisely what form this wave 
takes, but it is tacitly assumed that some information could be gleaned, for example, 
from a numerical solution of (34)-(36). 

Since all other details of the solution appear consistent - and certainly we have 
produced complete agreement with Miles' work - we can be fairly confident that our 
interpretation of the form of solution in 6 < 0 is correct. After all, considerable 
headway has been made merely by introducing the exponential tail of the large 
solitary wave; but by the same token we can expect that some aspects remain unclear. 

The solution describing the interaction of the large and small wave, and particularly 
the bending of the large wave, requires detailed information about the associated 
Legendre function P;". This limits the usefulness of our results since, for general p 
and v, P;p is not expressible in a simple closed form. However, one result that is 
readily available is the phase shift of the large wave. By using the asymptotic behaviour 
of P;P(T) as T-+ - 1, it is easy to show that the phase shift is 

to leading order in e. This confirms all our previous results, for as lpl+ co ( v  fixed) 
the phase shift approaches 0, and as 11.1 + v the phase shift increases without bound. 

As a final example of the type of solution derived here (and as a useful synopsis of 
the details) let us consider the case of v = 1, for which P;p takes an elementary form. 
Of course we are interested in v = 1 for 3'' not close to unity7 (see figure 3 ) ,  and this 
corresponds to Fl E 1.225. The critical angle is about 58" (see figure l),  and so for an 
oblique interaction not close to this angle the solution (for 7, say) is 

which is actually valid for all v. The important point about this solution is that the 
dominant interaction term is O(ei), whereas the wave producing it is O(e). Close to the 
critical angle we have A = A, -k &A, with 

where 
r 71(6+f(5)), # 4I (E+f (5 )>4 ,  

= In [(I + lPl)/(F + IPI )I, T = tanh $ 4 3  C, 
t Note that, even though v = 1, we maintain g = o(1) (under our assumption: see $5) and 

hence the small waw is essentially absent in 6 < 0 for a strong interaction. 
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and ,u = .J+ CIA, a 21 0.97, C, -N 1.6. If Ipl > 1, with f(m) = 0, then as 6 4  -CQ the 
phase shift is 

if = 1 we have the resonant wave with an infinite phase shift, and the wave lies 
along 5 N 1.79<, C-+ -m. 

I n  conclusion, this work has shown how the interaction of the two waves has an 
associated critical angle which can be interpreted in terms of energy transport. The 
strong interaction can produce significant, that is O( 1)) changes to the large wave. It 
would seem to be quite possible to measure the angle between the waves, when the 
small wave distorts the larger, and thereby obtain values for the critical angle. Of 
course, one can envisage difficulties that arise out of the unsteady character of the 
experimental (or natural) set-up, and therefore it might be necessary to think in terms 
of a periodic phenomenon. In  this case we might hope that our theory gives the 
essential description of the interaction in a local sense, if the waves are fairly well 
spaced. To some extent it should also be possible to estimate the phase shift of the 
larger wave, and to seek for the special resonant interaction. Some of these points are 
currently under examination in the Department of Ocean Engineering a t  Newcastle. 

Finally, a direct application of the theory is in the prediction of wave breaking. By 
using either the exact condition for the onset of breaking or an appropriate amplitude- 
to-depth ratio, the effect of wave interaction on wave breaking can be examined. 
Even apart from the strong-interaction case, we can anticipate a surprisingly large 
effect, since the dominant interaction term is O(&) when the small wave is only O(s) .  
Further, in this case, the interaction term is known completely, although it does only 
shift the large wave; this, however, could be quite significant if the local depth is 
changing. In  both the strong and weak interactions, further information about the 
interaction process is not available. This would appear to be the next and main avenue 
of study, presumably by the numerical solution of the relevant interaction equations or 
possibly the full problem itself. Certainly the oblique interaction of two arbitrary- 
amplitude solitary waves is currently outside the scope of analytical treatment, and 
only a numerical approach gives any hope of success. 

The author is particularly grateful to a referee for his very helpful and illuminating 
comments which have led to improvements in the work. 
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